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CASO 2 
 
Anamnesis: Escolar de sexo femenino, consulta a los 8 años 5 meses por comedones/acné 
y botón mamario de inicio a los 7 años 6 meses. 
 
Antecedentes de importancia: 

- Mórbidos: intolerancia a la lactosa 
- Perinatal: macrosomía fetal - GEG (4130 g para 40 sem) 
- Familiares: Padre con acné inflamatorio severo, con desarrollo puberal normal. 

 
Examen físico 

- Peso: 34.7 kg ; Talla: 141 cm (p96 , z: +1.77) ; IMC: 17.5 (p75 , z: 0.66) 
- Talla objetivo genética: 161,7cm (p31 , z -0,22) ∆zTalla/TOG: +1,99 
- Piel oleosa, cabello graso, acné inflamatorio  

Tanner 3 mamario y púbico, sin clitoromegalia, con estrogenización vaginal. 
 
Exámenes: 

- Rx Edad ósea es de 11 años 6 meses para edad cronológica de 8 años 5 meses 
- Ecografía pélvica con signos puberales 
- LH 2.74 uUI/mL, estradiol 20.2 pg/mL 
- 17 OH Progesterona 16 ng/mL (CLIA, Maglumi 800) 
- ▪ Repetido UC: 45,46 ng/ml (MS/MS) 
- Androstenediona 2.21 ng/mL 
- Test ACTH peak cortisol 22.9 ug/dL 
- DHEAs: 1,45 ug/ml 
- Testosterona total: 25,1 ng/dl 
- α-fetoproteína y β-HCG negativas 

jclagos
Tachado



 
Estudio molecular Gen CYP21A2: 
c . 445-42C>A ; 515T>A ; 707T>A ; 710T>A ; 716T>A ; 841G>T ; 920-921insT 
p. ? ; Ile172Asn ; Ile236Asn ; Val237Glu ; Met239Lys ; Val281Leu ; Leu307Phefs*6 
 
Diagnóstico: Hiperplasia suprarrenal congénita no clásica 
 
Plan: Recibe tratamiento con hidrocortisona, espironolactona y triptorelina. 
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The deficiency of 21-hydroxylase due to CYP21A2 pathogenic variants is a rather


frequent disease with serious consequences, going from a real mortality risk to infertility


and to milder symptoms, nevertheless important for affecting the patients’ self-esteem. In


the most severe cases life-threatening adrenal salt wasting crises may occur. Significant


morbidity including the possibility of mistaken gender determination, precocious puberty,


infertility and growth arrest with consequent short stature may also affect these patients.


In the less severe cases milder symptoms like hirsutism will likely affect the image


of the self with strong psychological consequences. Its diagnosis is confirmed by


17OH-progesterone dosages exceeding the cut-off value of 10/15 ng/ml but genotyping


is progressively assuming an essential role in the study of these patients particularly in


confirming difficult cases, determining some aspects of the prognosis and allowing a


correct genetic counseling. Genotyping is a difficult process due to the occurrence of


both a gene and a highly homologous pseudo gene. However, new tools are opening


new possibilities to this analysis and improving the chances of a correct diagnosis and


better understanding of the underlying mechanisms of the disease. Beyond the 10


classic pathogenic variants usually searched for in most laboratories, a correct analysis


of 21OH-deficiency cases implies completely sequencing of the entire gene and the


determination of gene duplications. These are now recognized to occur frequently and


can be responsible for some false positive cases. And finally, because gene conversions


can include several pathogenic variants one cannot be certain of identifying that both


alleles are affected without studying parental DNA samples. A complete genotype


characterization should be considered essential in the preparation for pregnancy, even


in the case of parents with milder forms of the disease, or even just carriers, since it has


been reported that giving birth to progeny with the severe classic forms occurs with a


much higher frequency than expected.


Keywords: 21OH deficiency, CAH—congenital adrenal hyperplasia, adrenal cortex, androgen excess syndromes,


genotyping, endocrine genetics, rare diseases, disorders of sex development
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INTRODUCTION


The congenital adrenal hyperplasias (CAH) are a group of
autosomal recessive disorders that are caused by decreased
activity of one of the enzymes involved in the steroidogenic
pathway of the adrenal cortex, leading to impaired synthesis
of cortisol by the adrenal gland. The vast majority of the
cases of CAH (95%) are due to 21-hydroxylase deficiency
and associated with pathogenic variants in the 21-hydroxylase
(CYP21A2) gene. This form of CAHwill be themajor focus of this
article. Most affected individuals are compound heterozygotes,
presenting different pathogenic variants on each allele rather than
being homozygous for the same pathogenic variant. Although
there seem to be some exceptions, most heterozygotes/carriers
are asymptomatic.


Complete loss of function pathogenic variants of the
CYP21A2 gene are associated with impaired cortisol and
aldosterone synthesis. The accumulation of steroid precursor
molecules leads to increased adrenal androgen production
utilizing the delta-5 pathway and CYP17A1. Decreased cortisol
concentrations result in loss of the negative feedback inhibition


leading to a compensatory increase of adrenocorticotropic
secretion (ACTH) and hypertrophy of the adrenal cortex.


The clinical importance of CAH results from the possible


occurrence of adrenal insufficiency, genital ambiguity, short
stature, androgen excess syndromes and infertility.


With increased awareness of the signs and symptoms
of CAH, morbidity and mortality has decreased. Hormone
replacement therapy is beneficial, but affected individuals
require very precise and personalized treatment regimens for
optimal outcomes.


Thus, clinicians need to be aware of the potential
consequences and complications of CAH. Specific issues
include concerns regarding genital ambiguity in affected females,
premature pubarche, accelerated skeletal maturation with
reduced final height, bone health, adrenal tumors, and testicular


adrenal rests tumors (TARTs). Although more common among
affected females, infertility can affect both genders. Genetic
counseling is essential, especially since this disease affects many
individuals at reproductive age (1–3).


In spite of the fact that this disorder results from a continuum
of enzymatic deficiencies, congenital adrenal hyperplasia has
been classified into three main forms (Table 1).


1 The salt-wasting or salt-losing form is associated with
complete loss of 21-hydroxylase activity leading to deficient
cortisol and aldosterone biosynthesis.


Prior to newborn screening programs, affected females were


more rapidly identified due to the simultaneous presence of


genital ambiguity. The genital ambiguity involves enlargement of
the phallus, varying degrees of fusion of the labioscrotal folds,


and non-palpable gonads. Affected males typically presented
within the first 2 weeks of life with failure to thrive, vomiting,
hypotension, hyponatremia, and hyperkalemia.


2 The simple virilizing form often presents with genital
ambiguity without overt salt loss in affected females. This


simple virilizing form may present with phallic enlargement,
premature development of sexual hair, and initially tall stature,
accompanied by advanced skeletal maturation resulting in
final short stature. Children with simple virilizing CAH
generally synthesize sufficient aldosterone and so they are not
overt salt-losers.


Salt-losing and simple virilizing CAH are often grouped together
as the classic forms. The incidence of classic CAH is reported as
being of 1:15,000 live births. Consequently, the carrier frequency
is ∼1:60 (4–9). In black Americans the incidence is much lower,
going from 1:25,000 to 1:42,000 in different studies (10, 11).


3 The most common form of CAH is the non-classic or
late onset form (NCAH). The characteristic features of
NCAH, hirsutism, irregular menses, and infertility, lead to
an ascertainment bias favoring diagnosis of affected females.
Affected males are usually only identified through family
studies. Overt glucocorticoid andmineralocorticoid deficiency
are unusual. Although patients with NCAH usually have no
evidence of ACTH or CRH excess, some may demonstrate
an increased glucocorticoid response to ACTH stimulation,
possibly reflective of subtle adrenal hyperplasia (12–14). The
reason for the existence of increased androgen production
by the adrenals without an increase in ACTH has been
attributed to an altered enzymatic kinetic of CYP21A2 (15).
The elevated androgen levels in NCAH may also result from
ovarian hypersecretion since the ovaries in NCAH women are
frequently polycystic (15, 16), and from peripheral conversion
of precursors.


NCAH affects between 0.1 and 1% of the general population.
Among hirsute women its prevalence reaches between 1 and 10%


TABLE 1 | Phenotypes of 21-hydroxylase deficiency.


Classic Salt-Wasting—very severe (0% enzymatic activity)


Failure to thrive


Cortisol deficiency


Mineralocorticoid deficiency


Hyponatremia


Hyperkalemia


High PRA


Hypovolemic shock


Excess androgen production, early in life


Virilization of external genitalia in females


Classic Simple Virilizing—intermediate severity (1–2% enzymatic activity)


Virilization of external genitalia in females


Progressive Premature Pubarche


Progressive virilization with clitoromegaly (female) or increased penile size (male)


Elevated androgen levels cause accelerated growth velocity and advanced bone


age but premature fusion of the epiphyses is also observed causing final short


stature.


Non-Classic Adrenal Hyperplasia—milder form (20–50% enzymatic


activity)


Between asymptomatic or with signs of androgen excess appearing later in life


(acne; hirsutism; menstrual irregularities; anovulation; infertility).
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(16–20). The most recent meta-analysis indicated the prevalence
of 4.2% among women with androgen excess worldwide
(21). One clinical study based on ACTH-stimulated 17-OHP
concentrations reported the incidence to be highest among
Ashkenazi Jewish populations (22).


The signs and symptoms of NCAH are similar to those of
Polycystic Ovary Syndrome (PCOS) (16). Since the treatment,
potential complications, and genetic implications differ between
these 2 syndromes, accurate diagnosis is important and that
may impose a complete differential diagnosis in every case
of hirsutism and a surveillance of metabolic dysfunction (e.g.,
insulin resistance) and subsequent prevention of the increased
cardiovascular risk not only in PCOS but also in NCAH
cases (16).


MOLECULAR GENETIC TESTING


CYP21 Gene Structure
The CYP21A2 gene is located in the long arm of chromosome


6, within the major human histocompatibility complex (HLA),


a region that displays a complex organization of genes with a


great variability in gene size and copy numbers (2, 3, 23, 24).


Approximately 30 kb from the CYP21A2 gene there is a non-


functional pseudogene—CYP21A1P. Both, the functional gene


and the pseudogene comprise ten exons and share a high level
of nucleotide sequence identity of 98% in their exons and
96% in their introns (25, 26). The pseudogene CYP21A1P is
inactive because of the presence of multiple pathogenic variants,
small insertions or deletions and point pathogenic variants that
prevent the synthesis of a functional protein. The location
and high rate of homology between the two genes facilitates
misalignment that results in recombination events between the
gene and the pseudogene (Figure 1). These events that are
called gene conversions constitute a mutagenesis mechanism that
contributes to the majority of the point pathogenic variants in the
CYP21A2 gene.


Neighboring the CYP21A2 and the CYP21A1P genes there
are three other genes, RP1, C4, TNXB and two truncated
pseudogenes, RP2 and TNXA, that together, constitute a
genetic unit designated RCCX module (RP-C4-CYP21-TNX)
(Figure 2) and correspond to a highly variable stretch of DNA
of ∼30Kb (28). The genes C4B and C4A encode for the fourth
component of serum complement (29, 30) the gene TNXB for
an extracellular matrix protein termed tenascin-X23 and the
RP1 gene for a serine/threonine nuclear protein kinase (28).
The usual organization is bimodular, and consists of two RCCX
modules, one with the CYP21A1P pseudogene and the other
with the CYP21A2 gene, where the orientation of the genes from
telomere to centromere is: RP1-C4A-CYP21A1P-TNXA-RP2-
C4B-CYP21A2-TNXB. This bimodular haplotype is present in
about 69% of the Caucasian population, while a monomodular
haplotype occurs with a frequency of 17% and a “three modular”
haplotype in about 14% of the cases (Figure 2) (28, 31). The
majority of the trimodular haplotypes carry two copies of
the CYP21A1P pseudogene and one copy of the CYP21A2
gene, but the haplotype with two copies of the CYP21A2


gene and one copy of the CYP21A1P pseudogene is also
possible and has been described in carriers of the p.(Gln319∗)
pathogenic variant and of chimeric CYP21A1P/CYP21A2
genes (31–34).


The frequent existence of copy number variations together
with the large number of possible genetic variants makes
the characterization of CYP21A2 alleles rather difficult.
Pathogenic variants have been identified both in the coding
and non-coding regions of the gene inclusively in the 5′UTR
and the 3′UTR regions. Consequently, it is important to
screen all coding exons, as well as intron-exon boundaries
of the gene.


CYP21A2 Pathogenic Alterations
Due to gene and pseudogene location and the highly
polymorphic complexity of the region, recombination events are
the major cause of CYP21A2 pathogenic variants.


Intergenic recombinations are responsible for more than 95%
of the pathogenic variants causing 21OHD. Approximately 75%
of the deleterious variants are transferred by small conversions
from the pseudogene during meiosis. These conversions
can involve one or more pseudogene variants. They are
called “microconversions,” when they are limited to a single
point variant.


In the remaining 20–25% of the cases, CAH is due to gross
misalignment owing to unequal crossing over during meiosis
that can lead to gene deletions, gene duplications and deletions
involving CYP21A2 and other contiguous genes (35, 36). CAH
can also be caused by uniparental isodisomy but this is rare (37).


To date more than 1,300 genetic variants have been reported
but only 230 affecting human health (38). The majority of these
pathogenic variants result in classic form cases (156 in the
total 230) (38). Nineteen genetic variants have been described
in the non-translated regions of the gene. Of these, 4 affect
the promoter, resulting in promoter conversion: c.(-126C>T;
−113G>A;−110T>C; and−103A>G). c-126C>T was reported
to cause NCAH (39).


One hundred and fifty three of the 230 genetic variants were
demonstrated to be missense mutations (38). These can result in
all forms of the disease while nonsense and frameshift mutations
always result in the classic forms.


The real life situation, however, can be much simplified
as there is a small group of pathogenic variants that
account for the great majority of affected alleles (n = 10)
(Figure 3). The screening strategy to search for those most
common pathogenic variants is an usual practice among
molecular geneticists as the process is less expensive and less
time consuming.


Whenever possible familial segregation studies should be
done, in which both parents are studied together with the
proband, so that one may know if two detected pathogenic
variants affect the 2 alleles (trans configuration) or are
located in the same allele (cis configuration). In this last
situation there is only one allele with mutations and the
other allele is normal. That person will not be clinically
affected in spite of having 2 pathogenic variants on the
CYP21A2 gene.
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FIGURE 1 | Schematic representation of the mechanism of gene conversion, where a misalignment between the two DNA sequences results in a recombination


between the CYP21A2 gene and the CYP21A1P pseudogene.


FIGURE 2 | Schematic diagram of the organization of the RCCX modules, one with the CYP21A1P pseudogene and the other with the CYP21A2 gene for the most


common bimodular haplotype and for the three modular haplotype with two modules harboring the CYP21A1P pseudogene and one the CYP21A2 gene. Adapted


from Sweeten et al. (27).


Molecular genetic testing of the CYP21A2 gene should
be considered essential since it allows the establishment of
correlations between genotype and phenotype, confirming the
clinical and biochemical diagnosis, inferring about the severity
status of the patients, distinguishing between severe and milder
cases and, very importantly, allowing a correct genetic counseling
for any couple at risk and their relatives.


CYP21A2 Genetic Variants
Two types of recombination can be considered: one is the
result of an unequal crossing over during meiosis, with the
production of large rearrangements and the other consists of
smaller gene conversions where a segment of the functional
CYP21A2 gene is replaced by a segment copied from the


CYP21A1P pseudogene (Figure 1). The segment of the converted
CYP21A2 gene will carry either a few nucleotides from
CYP21A1P (microconversions) or a short sequence affecting one
or more exons (25, 40–42). The converted sequences harbor
pathologic variants so that they will inactivate or at least
significantly modify the normal CYP21A2 gene translation of
the protein.


Large Deletions and Gene Conversions
Large gene conversions and large deletions, sometimes involving
C4B and CYP21A2 with the formation of CYP21A1P/CYP21A2
chimeric genes comprise ∼20% of the pathogenic variants.
In the last situation a 26 or 32Kb deletion (depending
on whether C4B is the long or short gene), involving the
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FIGURE 3 | Distribution of the most common mutations along the CYP21A2 gene that are transferred by gene conversion and the association with clinical severity.


SW, salt wasting; SV, simple virilizing; NC, Non-classic.


FIGURE 4 | Schematic diagram of the formation of chimeric genes by large


gene deletions.


3′ end of CYP21A1P, all of the C4B gene, and the 5′


end of the CYP21A2 gene, produces a single non-functional
chimeric gene with its 5′ and 3′ ends corresponding to
CYP21A1P and CYP21A2, respectively (Figure 4). Several
different chimeric CYP21A1P/CYP21A2 genes have been found
and characterized (43–47).


Point Pathogenic Variants and Small


Deletions/Insertions
Approximately 75% of the intergenic recombinations correspond
to pathogenic variants normally present in the pseudogene that
are transferred to the functional gene by microconversion events
(Figure 3) (41). Other rearrangements, such as a deletion of 10
nucleotides in exon 8 and a duplication of 16 nucleotides in exon
9 have also been reported.


P30L: Pro-30Leu (p.(Pro31Leu))
This pathogenic variant yields an enzyme with 20–60%
of normal activity when expressed in cultured cells (48).
However, enzymatic activity is rapidly lost when the cells
are lysed, suggesting that the enzyme is relatively unstable.
Patients carrying this pathogenic variant tend to have more
severe signs of androgen excess than patients carrying
the more common non-classic pathogenic variant V281L
(p.(Val282Leu) (48, 49). This pathogenic variant is found
in approximately one-sixth of alleles in patients with non-
classic disease, but it may comprise a higher percentage in
Japan (50).


IVS2-13A/C>G: A or C-G Pathogenic Variant in Intron


2 (c.293-13A/C>G)
This pathogenic variant is characterized by the substitution of
A or C nucleotide at 13 bp before the end of intron 2 (nt
656) to G. This pathogenic variant causes aberrant splicing
of intron 2 with retention of 19 nucleotides normally spliced
out of mRNA, resulting in a shift in the translational reading
frame (51, 52).


G11018nt (p.(Gly111Valfs∗21))
This deletion of eight nucleotides (8-nt) in exon 3 prevents
the synthesis of the protein by a frameshift and causes a salt-
wasting type of CAH (40). It is present in about 8% of the
salt-wasting cases.


I172N: Ile-172Asn (p.(Ile173Asn))
This pathogenic variant results in an enzyme with ∼1%
of normal activity (53, 54) and has been specifically
associated with the simple virilizing form of the disease;
however it has also been described in the salt wasting
form (55).
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Cluster in Exon 6: I236N/V237E/M238K: Ile-Val-Met-


236–237-238-Asn-Glu-Lys


(p.(Ile237Asn), p.(Val238Glu), p.(Met239Lys))
This cluster of three missense pathogenic variants in the G helix
also abolishes enzymatic activity possibly by interference with
substrate binding (52, 54).


V281L: Val-281Leu (p.(Val282Leu))
This pathogenic variant results in an enzyme with 50% of normal
activity when 17-OHP is the substrate but only 20% of normal
activity for progesterone (54, 56). V281L occurs in the majority
of patients with non-classic 21-hydroxylase deficiency who carry
the HLA haplotype B14; DR1, an association that is consistent to
a founder effect (57). Overall,∼70% of all non-classic alleles carry
the V281L pathogenic variant (58, 59).


F306+T: L306insT (p.(Leu307Phefs∗5))
This 1-nt insertion in exon 7 of CYP21A1P has generally been
described not as an independent pathogenic variant but in a
cluster of pseudogene derived pathogenic variants in exons 7 and
8 particularly in Dutch patients (60).


Q318X: Gln-318-Term (p.(Gln319∗))
A nonsense pathogenic variant in codon 318 (Q318X) where the
CAG, encoding glutamine changes to TAG, a nonsense codon
that is predicted to result in a completely non-functional enzyme
due to premature termination of translation (61).


R356W: Arg-356Trp (p.(Arg357Trp))
This pathogenic variant abolishes enzymatic activity when
expressed in mammalian cells (52, 53). It is located in a region of
the gene encoding the K helix of the enzyme, which suggests that
the pathogenic variant affects interactions with the cytochrome
P450 reductase (POR), but this has not been demonstrated
experimentally (62).


P453S: Pro-453Ser (p.(Pro454Ser))
This missense pathogenic variant results from a transition of a
CCC to a TCC and was initially described as not present in the
pseudogene (63, 64). Although the functional mechanism is not
clearly explained it corresponds to a decrease of 50–68% of 17-
OHP and 20–46% of progesterone utilization (65). It occurs in
a number of different populations and suggests that CYP21A1P
may carry P453S as an occasional polymorphism and that this
pathogenic variant is transferred to CYP21A2 in the same way as
the other pathogenic variants frequently causing 21-hydroxylase
deficiency (2).


Other Pathogenic Variants
More than 200 different pathogenic variants have been described
and this number is increasing with the improvements of
molecular diagnosis (see http://www.cypalleles.ki.se/cyp21.htm
and http://www.hgmd.cf.ac.uk). Some of these pathogenic
variants have been reported in several cases, but most of them are
private family pathogenic variants, which means that they were
described only in one family. Except for the nonsense, frameshift,
and rearrangement alterations that are deduced as severe, most


of these pathogenic variants are missense, and require functional
studies to be classified.


Less than 5% of the pathogenic variants in the CYP21A2 gene
are not caused by gene conversions and possibly are not present
in the pseudogene (66, 67).


In a study trying to establish a phenotype-genotype
correlation of 13 rare CYP21A2 pathogenic variants (68) it
was demonstrated that some were associated with the severe
SW form (L167P, G291S, G292D, and R354H), some with the
SV form (I77T, E320K, R341P, and G424S) and with the NC
form (I230T and R233K) but at the same time it was observed
that some of these pathogenic variants conferred different
phenotypes depending on if they were isolated or associated
with another pathogenic variant. This was the case of the
pathogenic variant I230T responsible for a NC form that if
associated with the V281L pathogenic variant corresponded to
a more severe phenotype. This synergistic effect that results in a
different phenotype has also been described for other pathogenic
variants, such as H62L (35), R339H (69), or P105L (65)
with P453S.


Polymorphisms
Some variants do not affect the protein production and are
considered normal polymorphisms (2). One of these variants,
D183E is also present in the CYP21A1P gene and represents a
gene conversion that does not affect the enzyme activity while
others, like K102R, S268T, and N493S have been described only
in the CYP21A2 gene.


GENOTYPING AND PREGNANCY


Genotyping of CYP21A2 gene is strongly recommended
particularly in couples that have the intention to conceive,
both to confirm the diagnosis in difficult cases but mostly
to be able to do a correct genetic counseling. Although the
correlation between genotype and phenotype is high, sometimes
the interpretation of the genotypes is rather difficult as we
will demonstrate.


The risk for a woman with CAH to have an infant with CAH
depends on her partner’s genotype. If her partner does not carry
a mutant CYP21A2 allele, all of her children will be carriers but
will not have the disease. If the woman is homozygous for a
mild pathogenic variant, such as V281L (p.(Val282Leu)) and her
partner carries a CYP21A2 pathogenic variant, the probability is
that 50% of her children will have NCAH. Since the probability
of a person in the general population being a carrier for a severe
pathogenic variant is 1.7% (1 in 60) (22) and the probability of a
patient with NCAH having a severe pathogenic variant together
with a mild one is ∼60% (as this occurs in 2/3 of the cases) (70),
the risk for having a child with classic CAH would be expected to
be 1:600. However, it was demonstrated that the real frequency
is closer to 2.5% (71) and this increased risk was attributed to
presumably higher carrier frequencies in certain ethnic groups.
Thus, the genotyping of both parents should be a component of
the pre-natal study protocol for families in which one parent has
CAH (71).
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GENOTYPE-PHENOTYPE CORRELATIONS


In general terms there is a good correlation between genotype and
phenotype (90–95%).


Some pathogenic variants translate into the most severe forms
of the disease (enzymatic deficiency of almost 100% or, in other
terms no 21-hydroxylase activity) resulting in the salt-wasting
forms of CAH. These pathogenic variants are called Severe
pathogenic variants (Table 2).


Missense pathogenic variant I172N (p.(Ile173Asn)) confers
around 1–2% 21-hydroxylase activity. This results in a near
normal aldosterone synthesis and so it is associated with the
simple virilizing form of CAH. These are called the Intermediate
pathogenic variants (Table 2).


A third group of pathogenic variants including P30L
(p.(Pro31Leu)), P453S (p.(Pro454Ser), R339H (p.(Arg340His)),
R369W (p.(Arg370Trp)), I230T (p.(Ile231Thr)) (68), and
V281L (p.(Val282Leu)) (clearly the most frequent pathogenic
variant in NCAH cases in every series) result in a more
substantial preservation of enzymatic activity (20–60%)
and are associated with the NCAH forms (Mild pathogenic
variants) (Table 2).


Since most of 21-hydroxylase deficient CAH patients are
compound heterozygotes:


(1) The most severe phenotypes (the classic forms) must have
two severe pathogenic variants and no mild pathogenic variants


(2) NCAH patients may have two mild pathogenic variants
(25–50%) or one mild and one more severe pathogenic variant
(50–75%). The mild pathogenic variant allows the synthesis of
21-hydroxylase up to 50% of the normal activity in spite of the
fact that the severe pathogenic variant would not contribute to
any synthesis.


These pathogenic variants are substantially correlated with
the clinical severity and with the different clinical forms of
disease—salt-wasting, simple virilising, and non-classical. This
is particularly true in patients with severe pathogenic variants.
A greater diversity of clinical phenotypes can be observed in
patients with less severe pathogenic variants where although the
phenotype can be predicted to correspond to the less severely
affected allele, the presence of a second allele with a severe or
an intermediate pathogenic variant, can result in a more severe
clinical phenotype (65, 68, 69, 72, 73).


It was also reported that NCAH patients with a mild
plus a severe pathogenic variant had more intense degrees
of hirsutism and higher 17OHP levels both basal and after
ACTH stimulation than those with two mild pathogenic
variants (70, 74).


Heterozygotes, also, have 17OH-progesterone responses to
ACTH stimulation that are clearly above normal even though not
attaining the levels of patients bearing the disease. These results
await further developments.


There are several examples that, in spite of the general
assumption that there is a relatively high concordance between
genotype and phenotype there is some variability, particularly
in the moderately affected patients (75–77). The pathogenic
variants designated as IVS2-13 (c.293-13A/C>G) and I172N
(p.(Ile173Asn)) for instance result in variable degrees of


TABLE 2 | Genotype-phenotype correlation for the most common pathogenic


variants, according to the percentage of enzyme activity.


Variant % Enzyme active Phenotype


Severe Gene deletions and Large


gene conversions


0% Classic—Salt


wasting CAH


8bp del


E6 cluster


Q318X (p.(Gln319*))


R356W (p.(Arg357Trp)


Intermediate I172N (p.(Ile 173 Asn)) 1–2% Classic—Simple


virilizing CAH


Mild P30L(p.(Pro31Leu)) 20–60% Non-classic CAH


P453S (p.(Pro454Ser)


R339H (p.(Arg340His))


R369W (p.(Arg370Trp)


I230T (p.(Ile231Thr))


V281L (p.(Val282Leu))


21-hydroxylase activity (possibly through alternative splicing)
hence explaining that patients that would generally be expected
to be Simple Virilizing cases may sometimes be Salt-Wasting and
others also be closer to NCAH (51, 60). Another example is the
P30L (p.(Pro31Leu)) pathogenic variant which can be associated
with cases of NCAH as well as cases of SV-CAH (64).


An explanation for some lack of correlation between genotype
and phenotype may result from not sequencing the whole gene in
most studies hence not having a full picture of the total number
of pathogenic variants.


In conclusion, the clinical condition related to 21-hydroxylase
deficiency represents a continuum of reductions in enzyme
activity of which the 3 levels of severity generally considered,
represent merely a systematization to guide and facilitate the
clinical practice (15). Finally, it was also recognized that the
phenotype can change with time which implies the impossibility
of a perfect correlation between genotype and phenotype.


PREVALENCE IN DIFFERENT ETHNIC
POPULATIONS


Reports regarding the incidence and percentage of specific
pathogenic variants among different ethnic groups have been
published (78). The V281L (p.(Pro282Leu)) pathogenic variant
is the most common in Ashkenazi Jews (allelic frequency of
63%). Large deletions are frequent in Anglo-Saxons (28%). The
Q318X (p.(Gln319∗)) was found in 16% of the East Indians. In
Croatians, the R356W (p.Arg356Trp)) pathogenic variant was
the most frequent (14%).


V281L (p.(Val282Leu), the most common pathogenic variant
in most of the European populations, was not detected in
Yupik-speaking, Eskimos of Western Alaska, Native Americans,
East Indians and Asians. The Yupik Eskimos, representing an
isolated geographic population with founder effect, carry the
IVS2-13A/C>G: A or C-G pathogenic variant in intron 2 (c.293-
13A/C>G).
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In a study of a large French population (68) the frequency
of the most common pathogenic variants was, for the classical
form: int2 (c.293-13A/C>G) (30%), large rearrangements (25%),
I172N (p.(Ile173Asn)) (17%), and Q318X (p.(Gln319∗)) (7%)
and for the NC form V281L (p.(Val282Leu) (55%), int2
(c.293-13A/C>G) (9%) large rearrangements (8%), I172N
(p.(Ile173Asn)) (4%), and Q318X (p.(Gln319∗)) (3%).


Three novel pathogenic variants, an insertion 1,003∧1,004
insA in exon 4, a C>T transition in codon 408 (p.(Arg408Cys))
and a A>G transition in the intron IVS2-2A>G were described
in Brazil and suggested to be due to a founder effect, as was
previously found for another pathogenic variant (G424S) in the
same population (79, 80).


In Finland, there seem to be multiple independent founder
CYP21A2 gene pathogenic variants, each one associated with a
different haplotype, where some are identical to those observed
in other Europe populations, probably introduced by immigrants
from Scandinavian or Baltic origin during the first centuries AD
and others found only locally and with a more recent origin. The
study of this diversity provided important informations about
migrations between and within populations (81, 82).


In Tunisia, there is a high prevalence of the pathogenic variant
Q318X (p.(Gln319∗)) (35.8%) (83).


A study in Iran, on the contrary, demonstrated that the
most frequent pathogenic variants in the CYP21 gene were
in2G, del-CYP21A2, and I172N (p.(Ile 173 Asn)). Unlike in
other ethnic groups, there was no R356W (p.(Arg357Trp))
pathogenic variant, and a higher rate of del-8bp (10%) was
found (84).


In Lebanese, for the classical forms, the most frequent
pathogenic variant was the splice site pathogenic variant in intron
2 accounting for 39% of the disease alleles, gene conversions
accounted for 14% of the alleles, but no large deletions
were found. In non-classical forms, the V281L (p.(Val282Leu))
pathogenic variant in exon 7 represented 86% of the tested
alleles (85).


De novo deletions and de novo apparent conversions have
been reported, comprising about 1% of 21-hydroxylase-deficient
alleles. The allele frequency of de novo gene conversion
in intron 2 in the general population is estimated 1 in
2× 104 (2).


Different chimeric CYP21A1P/CYP21A2 genes have been
described in different populations, some of them in Taiwanese
(45, 46, 86), and the others in patients of Caucasian origin
(43, 44, 47).


GENETIC TESTING


PCR-based mutation-detection methods with sequencing
of the entire gene and multiplex ligation-dependent probe
amplification are nowadays the golden standard for genotyping
the CYP 21A2 gene.


General Considerations
The specific gene amplification by PCR has dramatically
improved the sensitivity of the different techniques to detect
CYP21A2 gene pathogenic variants. However, it was initially


difficult to use PCR because of the paucity of primers that would
amplify CYP21A2 without amplifying the highly homologous
CYP21A1P pseudogene, which carries most of the pathogenic
variants of interest.


With time, however, PCR conditions were identified
that permitted gene-specific amplification of CYP21A2 in
two segments.


PCR-based diagnosis may be complicated by failure to
amplify one haplotype and result in misdiagnosis. Examination
of flanking microsatellite markers in all family members can
minimize this problem.


If only a DNA sample from the patient is analyzed, it is
impossible to distinguish between compound heterozygosity
for different pathogenic variants in trans and the presence
of 2 pathogenic variants in the same allele allele (cis).
Therefore, ideally both parents should also be analyzed so as
to most reliably determine the phase of different pathogenic
variants (i.e., whether they lie on the same or opposite
alleles). Analysis of parental alleles also permits homozygotes
and hemizygotes (i.e., individuals who have a pathogenic
variant on one chromosome and a deletion on the other) to
be distinguished.


In the approach of genetic testing for CAH caused by
CYP21A2 pathogenic variants we can consider three groups
of studies:


1- Targeted analysis by screening of the most common CYP21A2
pathogenic variants


2- Duplications and deletions
3- Whole gene sequencing.


TARGETED PATHOGENIC VARIANT
ANALYSIS


This approach is designed to detect themost common pathogenic
variants described above. A number of different methods and
strategies have been described that cover a variable range of
pathogenic variants (87, 88).


Allele-Specific Oligonucleotide
Hybridization
This method is based on the hybridization with allele-specific
oligonucleotide (ASO) probes, which are short (typically 19–
21 nucleotides) single-stranded DNA segments with the specific
sequence of each polymorphic or mutant nucleotide in the gene.
These probes are usually radioactively labeled. DNA amplified
by PCR is dotted on filters and hybridized with the probes
corresponding to the normal and mutant sequences for each of
the frequently occurring gene conversions (Figure 5) (40, 63, 89).


Amplification-Created Restriction Sites
Several pathogenic variants causing 21-hydroxylase deficiency
(e.g., V281L and Q318X) create or destroy restriction sites and
can thus be detected after digestion of a PCR-amplified DNA
fragment with a restriction enzyme and subsequent analysis
in agarose gels stained with ethidium bromide. If a restriction
site does not exist it can be created by changing the sequence
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during the PCR with a modified primer and introduce a
polymorphic restriction site into the amplified segment. This
method thus involves a series of second round PCRs and several
different restriction digests but does not require radioactivity or
specialized equipment (Figure 6) (89, 90).


Single-Stranded Conformation
Polymorphisms (SSCP)
If double stranded DNA is denatured and then quickly returned
to native conditions, it will remain in a single-stranded state
with a characteristic conformation that can be detected by a
change in the mobility of the segment during polyacrylamide gel


FIGURE 5 | Allele-specific oligonucleotide hybridization (ASO) uses two


radiolabeled probes, one for the wild type allele (A–T) and one for the allele


with the mutation (C–G). DNA amplified by PCR is denatured, applied in a


membrane and hybridized with the two probes. The result is detected by


autoraradiography.


FIGURE 6 | Restriction Fragment Length Polymorphism (RFLP)—a mutation


can create or destroy a site that is digested by a specific a restriction enzyme.


The mutation can be detected by the different length of a PCR-amplified DNA


fragment between the normal and the mutant allele after separation in an


electrophoresis gel.


electrophoresis under non-denaturing conditions. This method
can detect novel pathogenic variant that would be missed by
allele-specific approaches, but has some complexity in execution
and interpretation (Figure 7) (74, 92).


Allele-Specific PCR (ARMS)
In this method two alternative reactions are done for each
pathogenic variant. Both PCR reactions use the same primer
on one end, but at the other end each reaction uses a primer
that corresponds to either the normal or mutant sequence. This
technique has similar advantages to the amplification-created
restriction site approach. The main differences are that it requires
more PCR reactions but does not involve restriction digests
(Figure 8) (93).


Ligation Detection Reaction (LDR)
DNA ligase can discriminate point pathogenic variant by
sequential rounds of linear template dependent ligation and
preferentially seal adjacent oligonucleotides hybridized to target
DNA in which there is perfect complementarity at the
nick junction. A single base mismatch at the nick junction
inhibits ligation and permits sequence discrimination at the
single nucleotide level by the mobility on a sequencing gel.
If the oligonucleotides are fluorescently labeled, the entire
genotyping can be performed on an automated DNA sequencer
(Figure 9) (94).


D-HPLC
Denaturing high pressure liquid chromatography (DHPLC) is
a relatively new technique, which uses heteroduplex formation
between wild-type and mutated DNA strands to identify


FIGURE 7 | Single-stranded conformation polymorphism—a PCR-amplified


DNA fragment is denatured in particular conditions and each the


single-stranded fragment assumes a characteristic conformation that can be


detected in a polyacrylamide gel electrophoresis. Adapted form Gasser


et al. (91).
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pathogenic variant. Heteroduplex molecules are separated
from homoduplex molecules by ion-pair, reverse-phase liquid
chromatography on a special column matrix with partial heat
denaturation of the DNA strands (Figure 10) (95, 96).


FIGURE 8 | Allele-specific PCR—two PCR reactions are done simultaneously,


with the same primer in one end and two different primers on the other end,


one with the normal sequence and the other with the mutant. The rate of


amplification is much higher with the specific primer and can be detected by


gel electrophoresis.


FIGURE 9 | Ligase detection reaction—DNA ligase preferentially seal adjacent


oligonucleotides hybridized to a DNA sequence when there is a perfect


complementarity at the nick junction. A single base mismatch generates a


different fragment detected by gel electrophoresis.


Minisequencing and Multiplex
Minisequencing
In minisequencing, a primer is hybridized to DNA next to a
variant nucleotide site and extended with DNA polymerase by a
single appropriate dideoxyribonucleotide triphosphate (ddNTP)
that matches the nucleotide at the target site. This method can be
used in a multiplex reaction with primers elongated at the 5′ end
with a poly(T) track of different sizes to facilitate electrophoretic
separation of the diagnostic products (Figure 11) (97).


DUPLICATIONS AND DELETIONS


A variety of methods are also available that can detect large
deletions or duplications not only in the exonic or intronic
regions of the CYP21A2 gene but also in the promoter and in
contiguous regions as for the C4B gene.


Southern-Blot
This is a method that combines the transfer of electrophoresis
and separation of DNA fragments to a filter membrane and
subsequent fragment detection by probe hybridization. It usually
uses genomic DNA, previously digested with restriction enzymes,
to determine the number of sequences (e.g., gene copies) in a
genome. Because it is a time-consuming and laborious method
that uses radioactively labeled probes and requires a large amount
of DNA it has been replaced by other techniques (Figure 12)
(44, 98).


FIGURE 10 | Denaturing high pressure liquid chromatography


(D-HPLC)—uses heteroduplex formation between normal and mutated DNA


strands. The different conformations are detected by ion-pair reverse-phase


liquid chromatography.
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FIGURE 11 | Minisequencing—a primer is hybridized to DNA next to a variant nucleotide site and extended with DNA polymerase by a single appropriate


dideoxyribonucleotide triphosphate (ddNTP) that matches the nucleotide at the target site. A poly(T) sequence with different sizes is included in each primer at the 5′


end to facilitate the electrophoretic identification. Adapted from Krone et al. (97). (A) The CYP21 gene shown schematically with the nine most common mutations,


transferred by apparent gene conversions from the CYP21P pseudogene. The P453S mutation is not present in the pseudogene, but occurs in 1–2% of mutant


alleles. (B) CYP21 wild-type gene with heterozygosity for the A/C polymorphism at the intron 2 splice site (I2 G) position. (C) Mixture of CYP21 and CYP21P gene


fragments demonstrating the detection of heterozygous mutations at every peak position. (D) CYP21P pseudogene amplicon with all common CYP21-inactivating


mutations, demonstrating the detection of all mutations in a homozygous state.


FIGURE 12 | Southern-blot—Genomic DNA is digested with restriction enzymes and smaller fragments are obtained and separated by electrophoresis. After being


transferred to a membrane and hybridized with radioactively labeled probes are detected by autoradiography.


Real Time PCR
Real time PCR is a technique where the progressions of a PCR
reaction can be monitored in real time and simultaneously


quantify the amount of product amplified. The method is
based on the detection of the fluorescence produced by a
reporter molecule which increases, as the reaction proceeds.
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FIGURE 13 | Real-time PCR—the method uses DNA probes with a fluorescent reporter at one end and quencher of fluorescence at the opposite end. The close


proximity of the reporter to the quencher prevents detection of its fluorescence. During a PCR reaction, in each cycle the probe hibridyzes and elongates releasing the


reporter that produces fluorescence detected and measured in real-time. The increase of fluorescence reflects the increase of product and can be quantified. R,


Reporter; Q, Quencher.


This quantification can be used to assess gene copy number
variations through a co-amplification of a control gene
(Figure 13) (23).


MLPA
Multiplex Ligation-dependent Probe Amplification (MLPA)
assay is a technique that enables the detection of variations
in the copy number of several human genes. Due to this
ability, MLPA can be used for several molecular diagnosis of
several different genetic diseases whose pathogenesis is related
to the presence of deletions or duplications of specific genes.
Moreover, MLPA assay can also be used in the molecular
diagnosis of genetic diseases characterized by the presence
of abnormal DNA methylation. Due to the large number
of genes or genetic sequences that can be simultaneously
analyzed by a single technique, MLPA assay represents the
gold standard for molecular analysis of all pathologies derived
from the presence of gene copy number variation. Detection of
deletions and duplications of the CYP21A2 gene and CYP21A1P
pseudogene is currently performed by Multiplex Ligation—
dependent Probe Amplification (MLPA), using the P050- CAH
Kit (MRC-Holland). This high resolution method to detect
copy number variation in genomic sequences uses only a single
pair of PCR primers and the specificity relies on the use of
progressively longer oligonucleotide probes in order to generate
locus-specific amplicons of increasing size that can be resolved
electrophoretically. Comparing the peak pattern obtained to
that of the reference samples it is possible to determine
which probes/locus show aberrant copy numbers (Figure 14)
(99, 100).


DNA SANGER SEQUENCING


Nowadays, in many hospitals, a whole gene sequencing together
with MLPA has become the standard procedures to genotype the
CYP21A2 gene in cases of 21OH Deficiency. This is the method


elected to detect pathogenic variants not screened by the targeted
analysis and is also able to detect novel sequence variants.
It usually covers the coding regions and the flanking intron-
exon regions of the gene. CYP21A2 whole genomic sequence
may be performed selecting the functional CYP21A2 gene and
amplifying by PCR into 2 partially overlapping fragments, P1
and P2 (Figure 16), respectively with 1 517 and 2 214 base-
pairs (bp), avoiding the co-amplification of the pseudogene
CYP21A1P (101). After selective amplification of the targeted
genes and subsequent purification, the PCR product is sequenced
with internal primers that cover the entire CYP21A2 gene
(Figures 15, 16) (102).


NEW ASPECTS IN GENOTYPING


A final and promising aspect that can result from Genotyping
is prevention. Preimplantation Genetic Diagnosis (PGD) can
already be performed and be used to limit the transmission
of the disease when used in conjunction with in vitro
Fertilization (IVF).


For prenatal diagnosis the use of maternal circulating fetal
DNA (Cff-DNA) allows early gender determination (SRY) in a
precocious phase of pregnancy. This allows a timely identification
of male fetuses that do not need to be treated prenatally
contrarily to female fetuses in which doctors may want to prevent
the occurrence of genital ambiguity. It is also possible to do
sequencing of the CYP21A2 gene in the fetal DNA circulating in
maternal blood, but the technique is complex and still carries a
significant possibility of false positive or false negative diagnoses.
Chorionic villus sampling and amniocentesis still gives better
outcomes but can only be performed rather late in view of the
timing where genetic identification of Classic phenotypes of the
disease would mostly benefit the decision process concerning the
institution of dexamethasone suppressive treatment during the
pregnancy (103).
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FIGURE 14 | Multiplex ligation-dependent probe amplification (MLPA). Adapted from Schouten et al. (99). (A) Multiplex ligation-dependent probe amplification (MLPA)


uses a single pair of primers and specific probes with progressive increasing lengths to be identified by electrophoresis. (B) Comparing the height of each peak of the


sample with a control detects the number of copies.


FIGURE 15 | DNA sequencing—a DNA fragment amplified by PCR is used in an amplification reaction that, besides the normal nucleotides dATP, dGTP, dCTP, and


dTTP, contains a mix of dye labeled terminator nucleotides (ddATP, ddGTP, ddCTP, and ddTTP). These modified nucleotides do not have the capacity of elongate the


DNA chain and terminate the reaction when incorporated. The DNA sequence is obtained by electrophoresis that separates the fragments and fluorescence detection


that identifies each of the nucleotides.
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FIGURE 16 | Schematic representation of CYP21A2 gene structure and the strategy proposed to sequence whole gene. Numbered black boxes represent CYP21A2


exons. Dot line (...) represent the first PCR-P1-amplification product (1,517 bp) and dash line (- - -) represent the second PCR-P2-amplification product (2,214 bp).


Arrows represent the primers used in six different sequencing reactions (P1F and Exon4R for P1 fragment and P2F, BM12F, CAH34R, and 10 F for P2 fragment).


Adapted from Carvalho et al. (102).


CONCLUSION


Congenital adrenal hyperplasia due to 21-hydroxylase deficiency
are a group of very important diseases due to its high morbidity
(the Classic forms) and its high prevalence (the Non-classic
forms). They affect patient’s life in many ways, going from
salt wasting life-threatening crises to genital ambiguity with all
its consequences of gender determination and reconstructive
surgeries ultimately affecting normal sexuality and reproduction.
This already highlights the importance of having a correct
diagnosis to the level of a complete genetic characterization.


Perhaps more importantly than being infertile many of
these patients often do not even attempt to conceive, but
in those who wish to do it, genetic counseling is of
particular importance.


The consequences of these diseases go still beyond, affecting
growth and final height, body image, impacting on self-esteem
and other psychological consequences including depression
and anxiety. Attention to the consequences of overtreatment
as well as under-treatment should always be present. In
adults transitioning from pediatric care, adrenal crises and
cardiovascular consequences together with the psychological
well-being become the principal focus.


The diagnosis is first confirmed through 17OH-progesterone
determinations which can be very high, moderately high or
even normal at basal conditions needing confirmation through
an ACTH stimulation test. The defining cut-off is generally
considered to be between 10 and 15 ng/ml, either basally or


post-ACTH. In the case of women these dosages should be
done in the follicular phase of their menstrual cycles and in
every patient the blood samples should be collected early in
the morning. Newborn screening programs are very important
as they permit the identification of severe cases at the ideal
time for treatment thus being life-saving in many situations. In
consequence of this screening programs, survival is no longer the
major issue and has been replaced by the need to improve the
patients’ quality of life.


Suspected cases and even confirmed ones should be genotyped
to completely characterize the pathogenic genetic variants.
Both parents should also be analyzed to confirm that the
pathogenic genetic variants affect both alleles. The actual
recommendation involves the entire gene sequencing whenever
that is possible. The main objectives are to confirm the diagnosis,
delineate personalized therapeutic strategies and allow a correct
genetic counseling.
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